Формула атф биохимия. Энергетика обмена веществ

Аденозинтрифосфорная кислота-АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).

Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Следовательно, АТФ - своеобразный аккумулятор энергии в клетке, который "разряжается" при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.

АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.

Схема Синтез АТФ в мвтохондрии клетки

ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры-> глицерин и жирные кислоты
Крахмал ->глюкоза

II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.

III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:

1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+

2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
(4Н++202- -->2Н20+02)

Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:

(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.

Судя по всему выше изложенному, требуется колоссальное количество АТФ. В скелетных мышцах при их переходе от состояния покоя к сократительной активности - в 20 раз (или даже в несколько сотен раз) резко одномоментно повышается скорость расщепления АТФ.

Однако, запасы АТФ в мышцах сравнительно ничтожны (около 0,75 % от ее массы) и их может хватить лишь на 2-3 секунды интенсивной работы.

Рис.15. Аденозинтрифосфат (АТФ, ATP). Молярная масса 507.18г/моль

Это происходит потому, что АТФ - крупная тяжелая молекула (рис.15 ). АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями. Подсчитано, что если бы в организме содержалось количество АТФ , достаточное для использования в течение одного дня , то вес человека, даже ведущего сидячий образ жизни, был бы на 75% больше.

Чтобы поддерживать длительное сокращение, молекулы АТФ должны образовываться в процессе метаболизма с такой же скоростью, с какой они расщепляются во время сокращения. Поэтому АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Таким образом, для поддержания активности мышечной ткани на определенном уровне необходим быстрый ресинтез АТФ с той же скоростью, с какой он расходуется.Это происходит в процессе рефосфорилирования, при соединении АДФ и фосфатов

Синтез АТФ - фосфорилирование АДФ

В организме АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорилированием. При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях:

АДФ + H 3 PO 4 + энергия → АТФ + H 2 O

Фосфорилирование АДФ


Субстратное фосфорилирование АТФ Окислительное фосфорилирование АТФ

Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование (используя энергию окисляющихся веществ). Основнаямасса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования Н-зависимой АТФ – синтазой.. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений..

Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.

Существуют три способа образования АТФ во время сокращения мышечного волокна.

Три основных пути ресинтеза АТФ:

1 - креатинфосфатная (КФ) система

2 - гликолиз

3 - окислительное фосфорилирование

Креатинфосфатная (КФ) система –

Фосфорилирование АДФ путем переноса фосфатной группы от креатинфосфата

Анаэробный креатинфосфатный ресинтез АТФ.

Рис.16. Креатинфосфатная(КФ)система ресинтеза АТФ в организме

Для поддержания активности мышечной ткани на определенном уровне необходим быстрый ресинтез АТФ . Это происходит в процессе рефосфорилирования, при соединении АДФ и фосфатов. Наиболее доступным веществом, которое используется для ресинтеза АТФ, в первую очередь является креатинфосфат (рис.16 ), легко передающий свою фосфатную группу на АДФ:

КрФ + АДФ → Креатин + АТФ

КрФ – это соединение азотосодержащего вещества креатинина с фосфорной кислотой. Концентрация его в мышцах составляет примерно 2–3 %, т. е. в 3–4 раза больше по сравнению с АТФ. Умеренное (на 20–40 %) снижение содержания АТФ сразу же ведет к использованию КрФ. Однако при максимальной работе запасы креатинфосфата также быстро истощаются. Благодаря фосфорилированию АДФ креатинфосфатом обеспечивается очень быстрое образование АТФ в самом начале сокращения.

В течение периода покоя концентрация креатинфосфата в мышечном волокне возрастает до уровня, примерно в пять раз превышающего содержание АТФ. В начале сокращения, когда начинаются снижение концентрации АТФ и увеличение концентрации АДФ вследствие расщепления АТФ под действием АТФазы миозина, реакция сдвигается в сторону образования АТФ за счет креатинфосфата. При этом переход энергии совершается с такой большой скоростью, что в начале сокращения концентрация АТФ в мышечном волокне изменяется мало, в то время как концентрация креатинфосфата падает быстро.

Хотя АТФ образуется за счет креатинфосфата очень быстро, посредством единственной ферментативной реакции (рис.16), количество АТФ лимитировано исходной концентрацией креатинфосфата в клетке. Чтобы мышечное сокращение могло продолжаться дольше нескольких секунд, необходимо участие двух других, упоминавшихся выше, источников образования АТФ. После начала сокращения, обеспечиваемого за счет использования креатинфосфата, подключаются более медленные, требующие участия многих ферментов пути окислительного фосфорилирования и гликолиза, благодаря которым скорость образования АТФ увеличивается до уровня, соответствующего скорости расщепления АТФ.

Какая система синтеза АТФ самая быстрая?

Система КФ (креатинфосфата) - это самая быстрая система ресинтеза АТФ в организме, поскольку она включает в себя только одну ферментативную реакцию. Она осуществляет перенос высокоэнергетического фосфата прямо с КФ на АДФ с образованием АТФ. Однако способность этой системы ресинтезировать АТФ ограничена, так как запасы КФ в клетке невелики. Поскольку эта система не использует для синтеза АТФ кислород, ее считают анаэробным источником АТФ.

Сколько КФ хранится в организме?

Общих запасов КФ и АТФ в организме хватило бы менее чем на 6 секунд интенсивной физической нагрузки.

В чем заключается преимущество анаэробной выработки АТФ с использованием КФ?

Система КФ/АТФ используется во время кратковременной интенсивной физической нагрузки. Она расположена на головках молекул миозина, т. е. непосредственно в месте потребления энергии. Система КФ/АТФ используется, когда человек совершает быстрые движения, например, быстро поднимается в гору, выполняет высокие прыжки, бежит стометровку, быстро поднимается с кровати, убегает от пчелы или отскакивает в сторону от грузовика при переходе улицы.

Гликолиз

Фосфорилирование АДФ в цитоплазме

Расщепление гликогена и глюкозы в анаэробных условиях с образованием молочной кислоты и АТФ.

Для восстановления АТФ с целью продолжения интенсивной мышечной деятельности в процесс включается следующий источник энергообразования – ферментативное расщепление углеводов в бескислородных (анаэробных) условиях.

Рис.17. Общая схема гликолиза

Процесс гликолиза схематично представлен следующим образом (рис.17 ).

Появление в процессе гликолиза свободных фосфатных групп делает возможным ре-синтез АТФ из АДФ. Однако при этом кроме АТФ образуются две молекулы молочной кислоты.

Процесс гликолиза более медленный по сравнению с креатинфосфатным ресинтезом АТФ. Длительность работы мышц в анаэробных (бескислородных) условиях ограничена в связи с исчерпыванием запасов гликогена или глюкозы и в связи с накоплением молочной кислоты.

Анаэробное образование энергии путем гликолиза производится неэкономно с большим расходом гликогена , так как используется только часть содержащейся в нем энергии (молочная кислота при гликолизе не используется, хотя содержит значительные запасы энергии ).

Конечно, уже на этом этапе часть молочной кислоты окисляется некоторым количеством кислорода до углекислого газа и воды:

С3Н6О3 + 3О2 = 3СО2 + 3Н2О 41

Образующаяся при этом энергия идет на ресинтез углевода из других частей молочной кислоты. Однако ограниченное количество кислорода при очень интенсивной физической нагрузке оказывается недостаточным для поддержания реакций, направленных на преобразование молочной кислоты и ресинтез углеводов.

Откуда берется АТФ для физической активности, продолжающейся более 6 секунд?

При гликолизе АТФ образуется без использования кислорода (анаэробно). Гликолиз происходит в цитоплазме мышечной клетки. В процессе гликолиза углеводы окисляются до пирувата или лактата и выделяются 2 молекулы АТФ (3 молекулы, если начинать расчет с гликогена). При гликолизе АТФ синтезируется быстро, но медленнее, чем в системе КФ.

Что является конечным продуктом гликолиза - пируват или лактат?

Когда гликолиз протекает медленно, и митохондрии адекватно акцептируют восстановленный НАДН, конечным продуктом гликолиза является пируват. Пируват превращается в ацетил-КоА (реакция, требующая НАД) и подвергается полному окислению в цикле Кребса и ЦПЭ. Когда митохондрии не могут обеспечить адекватное окисление пирувата или регенерацию акцепторов электронов (НАД или ФАДН), пируват превращается в лактат. Превращение пирувата в лактат уменьшает концентрацию пирувата, что предотвращает ингибирование реакции конечными продуктами, и гликолиз продолжается.

В каких случаях основным конечным продуктом гликолиза оказывается лактат?

Лактат образуется в том случае, когда митохондрии не могут адекватно окислять пируват или регенерировать достаточное количество акцепторов электронов. Это происходит при низкой ферментативной активности митохондрий, при недостаточном кислородном обеспечении, при высокой скорости гликолиза. В целом, образование лактата усиливается во время гипоксии, ишемии, при кровотечении, после употребления углеводов, при высокой концентрации гликогена в мышцах, при гипертермии, вызванной физической нагрузкой.

Какими другими способами может метаболизироваться пируват?

Во время физических упражнений или при недостаточно калорийном питании пируват превращается в заменимую аминокислоту аланин. Синтезированный в скелетных мышцах аланин с током крови попадает в печень, где превращается в пируват. Затем пируват превращается в глюкозу, которая поступает в кровоток. Этот процесс аналогичен циклу Кори и называется аланиновым циклом.

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье « «.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

  1. Алактатная или фосфагенная (анаэробная). Связана с процессами ресинтеза АТФ преимущественно за счет высокоэнергетического фосфатного соединения – КреатинФосфата (КрФ).
  2. Гликолитическая (анаэробная). Обеспечивает ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена и/или глюкозы до молочной кислоты (лактата).
  3. Аэробная (окислительная). Возможность выполнения работы за счет окисления углеводов, жиров, белков при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

Выглядит это так:

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно , то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти .

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

  1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
  2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
  3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут. Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Процесс фосфорилирования – реакция переноса фосфорильной группы от одного соединения к другому при участии фермента киназы. АТФ синтезируется путем окислительного и субстратного фосфорилирования. Окислительное фосфорилирование – синтез АТФ путем присоединения к АДФ неорганического фосфата с использованием энергии, освободившейся при окислении биоорганических веществ.

АДФ + ~Ф → АТФ

Субстратное фосфорилирование – непосредственная передача фосфорильной группы с макроэргической связью АДФ для синтеза АТФ.

Примеры субстратного фосфорилирования:

1. Промежуточным продуктом углеводного метаболизма является фосфоенолпировиноградная кислота, которая передает АДФ фосфорильную группу с высокоэнергетической связью:


Взаимодействие промежуточного продукта цикла Кребса – макроэргического сукцинил-Ко-А – с АДФ с образованием одной молекулы АТФ.

Рассмотрим три основных этапа освобождения энергии и синтеза АТФ в организме.

Первый этап (подготовительный) включает переваривание и всасывание. На этом этапе освобождается 0,1% энергии пищевых соединений.

Второй этап. После транспортировки мономеры (продукты распада биоорганических соединений) поступают в клетки, где подвергаются окислению. В результате окисления топливных молекул (аминокислоты, глюкоза, жиры) образуется соединение ацетил-Ко-А. В течение данного этапа освобождается около 30% энергии пищевых веществ.



Третий этап – цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций. Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953). Цикл имеет еще два названия:

Цикл трикарбоновых кислот, так как он включает реакции превращения трикарбоновых кислот (кислот, содержащих три карбоксильные группы);

Цикл лимонной кислоты, так как первой реакцией цикла является образование лимонной кислоты.

Цикл Кребса включает 10 реакций, четыре из которых окислительно-восстановительные. В ходе реакций освобождается 70% энергии.

Чрезвычайно велика биологическая роль этого цикла, поскольку это общий конечный пункт окислительного распада всех основных пищевых продуктов. Это главный механизм окисления в клетке, образно его называют метаболическим «котлом». В процессе окисления топливных молекул (углеводов, аминокислот, жирных кислот происходит обеспечение организма энергией в виде АТФ. Топливные молекулы вступают в цикл Кребса после превращения в ацетил-Ко-А.

Кроме того, цикл трикарбоновых кислот поставляет промежуточные продукты для процессов биосинтеза. Этот цикл происходит в матриксе митохондрий.

Рассмотрим реакции цикла Кребса:

Цикл начинается с конденсации четырехуглеродного компонента оксалоацетата и двухуглеродного компонента ацетил-Ко-А. Реакция катализируется цитратсинтазой и представляет собой альдольную конденсацию с последующим гидролизом. Промежуточным продуктом является цитрил-Ко-А, который гидролизуется на цитрат и КоА:


IV. Это первая окислительно-восстановительная реакция.
Реакция катализируется α-оксоглутаратдегидрогеназным комплексом, состоящим из трех ферментов:

VII.

В сукциниле имеется связь, богатая энергией. Расщепление тиоэфирной связи сукцинил-КоА сопряжено с фосфорилированием гуанозиндифосфата (ГДФ):

Сукцинил-КоА + ~ Ф +ГДФ Сукцинат + ГТФ +КоА

Фосфорильная группа ГТФ легко переносится на АДФ с образованием АТФ:

ГТФ + АДФ АТФ + ГДФ

Это единственная реакция цикла, являющаяся реакцией субстратного фосфорилирования.

VIII. Это третья окислительно-восстановительная реакция:


В цикле Кребса образуются углекислый газ, протоны, электроны. Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н + и ē и передают их в дыхательную цепь (цепь биологического окисления). Элементы дыхательной цепи находятся на внутренней мембране митохондрий.

Дыхательная цепь – система окислительно-восстановительных реакций, в ходе которых происходит постепенный перенос Н + и ē к О 2 , который поступает в организм в результате дыхания. В дыхательной цепи происходит образование АТФ. Основные переносчики ē в цепи – железо- и медьсодержащие белки (цитохромы), кофермент Q (убихинон). В цепи находится 5 цитохромов (b 1 , с 1 , с, а, а 3).

Простетической группой цитохромов b 1 , с 1 , с является железосодержащий гем. Механизм действия данных цитохромов состоит в том, что в их составе имеется атом железа с переменной валентностью, который может находиться как в окисленном, так и в восстановленном состоянии в результате переноса ē и Н + .

Бесспорно, самой важной молекулой в нашем организме с точки зрения производства энергии является АТФ (аденозинтрифосфат: адениловый нуклеотид, содержащий три остатка фосфорной кислоты и образуемый в митохондриях).

В действительности, каждая клетка нашего организма сохраняет и использует энергию для биохимических реакций посредством АТФ, таким образом, АТФ может считаться универсальной валютой биологической энергии. Все живые существа нуждаются в непрерывном энергоснабжении для поддержки синтеза белка и ДНК, метаболизма и транспорта различных ионов и молекул, поддержания жизнедеятельности организма. Мышечные волокна в ходе силовых тренировок также требуют легкодоступной энергии. Как уже упоминалось, энергию для всех этих процессов поставляет АТФ. Однако для того, чтобы сформировать АТФ, нашим клеткам требуется сырье. Люди получают это сырье через калории посредством окисления потребляемой пищи. Для получения энергии, эта пища сначала должна быть переработана в легко используемую молекулу – АТФ.

Перед использованием молекула АТФ должна пройти через несколько фаз.

Сначала при помощи специального коэнзима отделяется один из трех фосфатов (каждый из которых содержит десять калорий энергии), благодаря чему высвобождается большое количество энергии и формируется продукт реакции аденозиндифосфат (АДФ). Если требуется больше энергии, то отделяется следующая фосфатная группа, формируя аденозинмонофосфат (АМФ).

АТФ + H 2 O → АДФ + H 3 PO 4 + энергия
АТФ + H 2 O → АМФ + H 4 P 2 O 7 + энергия

Когда быстрого производства энергии не требуется, происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, благодаря чему формируется АТФ. Данный процесс включает перенос свободных фосфатов к другим содержащимся в мышцах веществам, к которым относятся и . При этом из запасов гликогена берется и расщепляется глюкоза.

Полученная из этой глюкозы энергия помогает вновь преобразовывать глюкозу в ее первоначальную форму, после чего свободные фосфаты вновь могут быть присоединены к АДФ для формирования нового АТФ. После завершения цикла вновь созданный АТФ готов к следующему использованию.

В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости. Действительно, АТФ похож на полностью перезаряжаемую батарею.

Структура АТФ

Молекула АТФ состоит из трех компонентов:

  • Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
  • Аденин (соединенные атомы углерода и азота)
  • Трифосфат

Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина.
Цепочка из трех фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие белок миозин, который формирует основу наших мышечных клеток.

Сохранение АТФ

В организме среднего взрослого человека ежедневно используется около 200-300 молей АТФ (моль – это химический термин, обозначающий количество вещества в системе, в котором содержится столько элементарных частиц, сколько атомов углерода содержится в 0,012 кг изотопа углерод-12). Общее количество АТФ в организме в каждый отдельно взятый момент составляет 0,1 моли. Это означает, что АТФ должен повторно использоваться 2000-3000 раз в течение дня. АТФ не может быть сохранен, поэтому уровень его синтеза почти соответствует уровню потребления.

Системы АТФ

Ввиду важности АТФ с энергетической точки зрения, а также из-за его широкого использования у организма имеется различные способы производства АТФ. Это три разные биохимические системы. Рассмотрим их по порядку:

Когда мышцам предстоит короткий, но интенсивный период активности (около 8-10 секунд), используется фосфагенная система – АТФ соединяется с креатинфосфатом. Фосфагенная система обеспечивает постоянную циркуляцию небольшого количества АТФ в наших мышечных клетках.

Мышечные клетки также содержат высокоэнергетический фосфат – фосфат креатина, который используется для восстановления уровня АТФ после кратковременной, высокоинтенсивной активности. Энзим креатинкиназа отнимает фосфатную группу у креатина фосфата и быстро передает ее АДФ для формирования АТФ. Итак, мышечная клетка превращает АТФ в АДФ, а фосфаген быстро восстанавливает АДФ до АТФ. Уровень креатина фосфата начинает снижаться уже через 10 секунд высокоинтенсивной активности, и уровень энергии падает. Примером работы фосфагенной системы является, например, спринт на 100 метров.

Система гликогена и молочной кислоты снабжает организм энергией в более медленном темпе, чем фосфагенная система, хотя и работает относительно быстро и предоставляет достаточно АТФ примерно для 90 секунд высокоинтенсивной активности. В данной системе молочная кислота образуется из глюкозы в мышечных клетках в результате анаэробного метаболизма.

Учитывая тот факт, что в анаэробном состоянии организм не использует кислород, эта система дает кратковременную энергию без активации кардио-респираторной системы точно так же, как и аэробная система, но с экономией времени. Более того, когда в анаэробном режиме мышцы работают быстро, мощно сокращаются, они перекрывают поступление кислорода, поскольку сосуды оказываются сжатыми.

Эту систему еще иногда называют анаэробным дыханием, и хорошим примером в данном случае послужит 400-метровый спринт.

Если физическая активность длится более дух минут, в работу включается аэробная система, и мышцы получают АТФ сначала из , потом из жиров и наконец из аминокислот (). Белок используется для получения энергии в основном в условиях голода (диеты в некоторых случаях).


При аэробном дыхании производство АТФ проходит наиболее медленно, но энергии получается достаточно, чтобы поддерживать физическую активность на протяжении нескольких часов. Это происходит потому, что при аэробном дыхании глюкоза распадается на диоксид углерода и воду, не испытывая противодействия со стороны молочной кислоты в системе гликогена и молочной кислоты. Гликоген (накапливаемая форма глюкозы) при аэробном дыхании поставляется из трех источников:

  1. Всасывание глюкозы из пищи в желудочно-кишечном тракте, которая через систему кровообращения попадает в мышцы.
  2. Остатки глюкозы в мышцах
  3. Расщепление гликогена печени до глюкозы, которая через систему кровообращения попадает в мышцы.

Заключение

Если вы когда-нибудь задумывались над тем, откуда у нас берется энергия для выполнения разнообразных видов активности при различных условиях, то ответом будет — в основном за счет АТФ. Эта сложная молекула оказывает помощь в преобразовании различных пищевых компонентов в легко используемую энергию.

Без АТФ наш организм просто не смог бы функционировать. Таким образом, роль АТФ в производстве энергии многогранна, но в то же время проста.

Поделиться