Ультразвук в газовой среде. Ультразвук - Что это такое? Отражение ультразвуковых волн

C развитием акустики в конце XIX века был обнаружен ультразвук, тогда же начались первые исследования ультразвука, но основы его применения были заложены только в первой трети XX-века.

Ультразвук и его свойства

В природе ультразвук встречается в качестве компонента многих естественных шумов: в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны.

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

Основными параметрами волны являются длина волны, частота и период. Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Вот основные из них:

  • 1. Малая длина волны. Для самого низкого ультразвукового диапазона длина волны не превышает в большинстве сред нескольких сантиметров. Малая длина волны обуславливает лучевой характер распространения УЗ волн. Вблизи излучателя ультразвук распространяется в виде пучков по размеру близких к размеру излучателя. Попадая на неоднородности в среде, ультразвуковой пучок ведёт себя как световой луч, испытывая отражение, преломление, рассеяние, что позволяет формировать звуковые изображения в оптически непрозрачных средах, используя чисто оптические эффекты (фокусировку, дифракцию и др.).
  • 2. Малый период колебаний, что позволяет излучать ультразвук в виде импульсов и осуществлять в среде точную временную селекцию распространяющихся сигналов.

Возможность получения высоких значений энергии колебаний при малой амплитуде, т.к. энергия колебаний пропорциональна квадрату частоты. Это позволяет создавать УЗ пучки и поля с высоким уровнем энергии, не требуя при этом крупногабаритной аппаратуры.

В ультразвуковом поле развиваются значительные акустические течения. Поэтому воздействие ультразвука на среду порождает специфические эффекты: физические, химические, биологические и медицинские. Такие как кавитация, звукокапиллярный эффект, диспергирование, эмульгирование, дегазация, обеззараживание, локальный нагрев и многие другие.

Потребности морского флота ведущих держав - Англии и Франции, для исследования морских глубин, вызвали интерес многих ученых в области акустики, т.к. это единственный вид сигнала, способный далеко распространяться в воде. Так в 1826 году французский учёный Колладон определил скорость звука в воде. В 1838 году, в США, звук впервые применили для определения профиля морского дна с целью прокладки телеграфного кабеля. Результаты опыта оказались неутешительными. Звук колокола, давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

Первый генератор ультразвука сделал в 1883 году англичанин Фрэнсис Гальтон. Ультразвук создавался подобно свисту на острие ножа, если на него дуть. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух или другой газ, выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на кромку, и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо "пьезоэлектричество" от греческого слова, означающего "нажать". Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

Гибель «Титаника» от столкновения с айсбергом, необходимость борьбы с новым оружием - подводными лодками требовали быстрого развития ультразвуковой гидроакустики. В 1914 году, французский физик Поль Ланжевен совместно с талантливым русским учёным-эмигрантом - Константином Васильевичем Шиловским впервые разработали гидролокатор, состоящий из излучателя ультразвука и гидрофона - приёмника УЗ колебаний, основанный на пьезоэффекте. Гидролокатор Ланжевена - Шиловского, был первым ультразвуковым устройством , применявшимся на практике. Тогда же российский ученый С.Я.Соколов разработал основы ультразвуковой дефектоскопии в промышленности. В 1937 году немецкий врач-психиатр Карл Дуссик, вместе с братом Фридрихом, физиком, впервые применили ультразвук для обнаружения опухолей головного мозга, но результаты, полученные ими, оказались недостоверными. В медицинской практике ультразвук впервые стал применяться только с 50-х годов XX-го века в США.

Волн начались более ста лет назад, только последние полвека они стали широко использоваться в различных областях человеческой деятельности. Это связано с активным развитием как квантового и нелинейного разделов акустики, так и квантовой электроники и физики твердого тела. Сегодня ультразвук - это не просто обозначение высокочастотной области акустических волн, а целое научное направление в современной физике и биологии, с которым связаны промышленные, информационные и измерительные технологии, а также диагностические, хирургические и лечебные методы современной медицины.

Что это?

Все звуковые волны можно подразделить на слышимые человеком — это частоты от 16 до 18 тыс. Гц, и те, которые находятся вне диапазона людского восприятия — инфра- и ультразвук. Под инфразвуком понимаются волны аналогичные звуковым, но с воспринимаемых человеческим ухом. Верхней границей инфразвуковой области считается 16 Гц, а нижней - 0,001 Гц.

Ультразвук - это тоже звуковые волны, но только их частота выше, чем может воспринять слуховой аппарат человека. Как правило, под ними понимают частоты от 20 до 106 кГц. Верхняя их граница зависит от среды, в которых эти волны распространяются. Так, в газовой среде предел составляет 106 кГц, а в твердых телах и жидкостях он достигает отметки в 1010 кГц. В шуме дождя, ветра или водопада, грозовых разрядах и в шуршании перекатываемой морской волной гальки есть ультразвуковые компоненты. Именно благодаря способности воспринимать и анализировать волны ультразвукового диапазона киты и дельфины, летучие мыши и ночные насекомые ориентируются в пространстве.

Немного истории

Первые исследования были проведены еще в начале XIX века французским ученым Ф. Саваром (F. Savart), стремившимся выяснить верхний частотный предел слышимости человеческого слухового аппарата. В дальнейшем изучением ультразвуковых волн занимались такие известные ученые, как немец В. Вин, англичанин Ф. Гальтон, русский с группой учеников.

В 1916 году физик из Франции П. Ланжевен, в сотрудничестве с русским ученым-эмигрантом Константином Шиловским, смог использовать кварц для приема и излучения ультразвука для морских измерений и обнаружения подводных объектов, что позволило исследователям создать первый гидролокатор, состоявший из излучателя и приемника ультразвука.

В 1925 году американец В. Пирс создал прибор, называемый сегодня интерферометром Пирса, измеряющий с большой точностью скорости и поглощение ультразвука в жидких и газовых средах. В 1928 году советский ученый С. Соколов первым стал использовать ультразвуковые волны для обнаружения различных дефектов в твердых, в том числе и металлических, телах.

В послевоенные 50-60-е годы, на основе теоретических разработок коллектива советских ученых, возглавляемых Л. Д. Розенбергом, начинается широкое применение УЗ в различных промышленных и технологических областях. В это же время, благодаря работам английских и американских ученых, а также исследованиям советских исследователей, таких как Р. В. Хохлова, В. А. Красильникова и многих других, быстро развивается такая научная дисциплина, как нелинейная акустика.

Примерно тогда же предпринимаются первые попытки американцев использовать ультразвук в медицине.

Советский ученый Соколов еще в конце сороковых годов прошлого века разработал теоретическое описание прибора, предназначенного для визуализации непрозрачных объектов - «ультразвукового» микроскопа. Основываясь на этих работах, в середине 70-х годов специалисты из Стэндфордского университета создали прототип сканирующего акустического микроскопа.

Особенности

Имея общую природу, волны слышимого диапазона, равно как и ультразвуковые, подчиняются физическим законам. Но у ультразвука есть ряд особенностей, позволяющих широко его использовать в различных областях науки, медицины и техники:

1. Малая длина волны. Для наиболее низкого ультразвукового диапазона она не превышает нескольких сантиметров, обуславливая лучевой характер распространения сигнала. При этом волна фокусируется и распространяется линейными пучками.

2. Незначительный период колебаний, благодаря чему ультразвук можно излучать импульсно.

3. В различных средах ультразвуковые колебания с длиной волны, не превышающей 10 мм, обладают свойствами, аналогичными световым лучам, что позволяет фокусировать колебания, формировать направленное излучение, то есть не только посылать в нужном направлении энергию, но и сосредотачивать ее в необходимом объеме.

4. При малой амплитуде существует возможность получения высоких значений энергии колебаний, что позволяет создавать высокоэнергетические ультразвуковые поля и пучки без использования крупногабаритной аппаратуры.

5. Под воздействием ультразвука на среду возникает множество специфических физических, биологических, химических и медицинских эффектов, таких как:

  • диспергирование;
  • кавитация;
  • дегазация;
  • локальный нагрев;
  • дезинфекция и мн. др.

Виды

Все ультразвуковые частоты подразделяются на три вида:

  • УНЧ - низкие, с диапазоном от 20 до 100 кГц;
  • УСЧ - среднечастотные - от 0,1 до 10 МГц;
  • УЗВЧ - высокочастотные - от 10 до 1000 МГц.

Сегодня практическое использование ультразвука - это прежде всего применение волн малой интенсивности для измерений, контроля и исследований внутренней структуры различных материалов и изделий. Высокочастотные используются для активного воздействия на различные вещества, что позволяет изменять их свойства и структуру. Диагностика и лечение ультразвуком многих заболеваний (при помощи различных частот) является отдельным и активно развивающимся направлением современной медицины.

Где применяется?

В последние десятилетия ультразвуком интересуются не только научные теоретики, но и практики, все более активно внедряющие его в различные виды человеческой деятельности. Сегодня ультразвуковые установки используются для:

Получение информации о веществах и материалах

Мероприятия

Частота в кГц

Исследование состава и свойств веществ

твердые тела

жидкости

Контроль размеров и уровней

Гидролокация

Дефектоскопия

Медицинская диагностика

Воздействия

на вещества

Пайка и металлизация

Пластическое деформирование

Механическая обработка

Эмульгирование

Кристаллизация

Распыление

Коагуляция аэрозолей

Диспергирование

Химические процессы

Воздействие на горение

Хирургия

Обработка и управление сигналами

Акустоэлектронные преобразователи

Линии задержки

Акустооптические устройства

В современном мире ультразвук — это важный технологический инструмент в таких промышленных отраслях, как:

  • металлургическая;
  • химическая;
  • сельскохозяйственная;
  • текстильная;
  • пищевая;
  • фармакологическая;
  • машино- и приборостроительная;
  • нефтехимическая, перерабатывающая и другие.

Кроме этого, все более широко используется ультразвук в медицине. Вот об этом мы и поговорим в следующем разделе.

Использование в медицине

В современной практической медицине существует три основных направления использования ультразвука различных частот:

1. Диагностическое.

2. Терапевтическое.

3. Хирургическое.

Рассмотрим более подробно каждое из этих трех направлений.

Диагностика

Одним из наиболее современных и информативных методов медицинской диагностики является ультразвуковой. Его несомненные достоинства - это: минимальное воздействие на человеческие ткани и высокая информативность.

Как уже говорилось, ультразвук — это звуковые волны, распространяющиеся в однородной среде прямолинейно и с постоянной скоростью. Если на их пути находятся области с различными акустическими плотностями, то часть колебаний отражается, а другая часть преломляется, продолжая при этом свое Таким образом, чем больше разница в плотности пограничных сред, тем больше ультразвуковых колебаний отражается. Современные методы ультразвукового исследования можно подразделить на локационные и просвечивающие.

Ультразвуковая локация

В процессе такого исследования регистрируются отраженные от границ сред с различными акустическими плотностями импульсы. При помощи перемещаемого датчика можно установить размер, расположение и форму исследуемого объекта.

Просвечивание

Этот метод основан на том, что различные ткани человеческого организма по-разному поглощают ультразвук. Во время исследования какого-либо внутреннего органа в него направляют волну с определенной интенсивностью, после чего специальным датчиком регистрируют прошедший сигнал с обратной стороны. Картина сканируемого объекта воспроизводится на основе изменения интенсивности сигнала на «входе» и «выходе». Полученная информация обрабатывается и преобразуется компьютером в виде эхограммы (кривой) или сонограммы - двухмерного изображения.

Допплер-метод

Это наиболее активно развивающийся метод диагностики, в котором используются как импульсный, так и непрерывный ультразвук. Допплерография широко применяется в акушерстве, кардиологии и онкологии, так как позволяет отслеживать даже самые незначительные изменения в капиллярах и небольших кровеносных сосудах.

Области применения диагностики

Сегодня ультразвуковые методы визуализации и измерений наиболее широко применяются в таких областях медицины, как:

  • акушерство;
  • офтальмология;
  • кардиология;
  • неврология новорожденных и младенцев;
  • исследование внутренних органов:

Ультразвук почек;

Желчного пузыря и протоков;

Женской репродуктивной системы;

  • диагностика наружных и приповерхностных органов (щитовидной и молочных желез).

Использование в терапии

Основное лечебное воздействие ультразвука обусловлено его способностью проникать в человеческие ткани, разогревать и прогревать их, осуществлять микромассаж отдельных участков. УЗ может быть использован как для непосредственного, так и для косвенного воздействия на очаг боли. Кроме того, при определенных условиях эти волны оказывают бактерицидное, противовоспалительное, обезболивающее и спазмолитическое действие. Используемый в терапевтических целях ультразвук условно подразделяют на колебания высокой и низкой интенсивности.

Именно волны низкой интенсивности наиболее широко применяется для стимуляции физиологических реакций или незначительного, не повреждающего нагрева. Лечение ультразвуком дало положительные результаты при таких заболеваниях, как:

  • артрозы;
  • артриты;
  • миалгии;
  • спондилиты;
  • невралгии;
  • варикозные и трофические язвы;
  • болезнь Бехтерева;
  • облитерирующие эндартерииты.

Проводятся исследования, во время которых используется ультразвук для лечения болезни Меньера, язв двенадцатиперстной кишки и желудка, бронхиальной астмы, отосклероза.

Ультразвуковая хирургия

Современная хирургия, использующая ультразвуковые волны, подразделяется на два направления:

Избирательно разрушающая участки ткани особыми управляемыми ультразвуковыми волнами высокой интенсивности с частотами от 10 6 до 10 7 Гц;

Использующая хирургический инструмент с наложением ультразвуковых колебаний от 20 до 75 кГц.

Примером избирательной УЗ-хирургии может послужить дробление камней ультразвуком в почках. В процессе такой неинвазивной операции ультразвуковая волна воздействует на камень через кожу, то есть снаружи человеческого тела.

К сожалению, подобный хирургический метод имеет ряд ограничений. Нельзя использовать дробление ультразвуком в следующих случаях:

Беременным женщинам на любом сроке;

Если диаметр камней более двух сантиметров;

При любых инфекционных заболеваниях;

При наличии болезней, нарушающих нормальную свертываемость крови;

В случае тяжелых поражений костной ткани.

Несмотря на то что удаление ультразвуком почечных камней проводится без операционных разрезов, оно довольно болезненное и выполняется под общей или местной анестезией.

Хирургические ультразвуковые инструменты используются не только для менее болезненного рассечения костных и мягких тканей, но и для уменьшения кровопотерь.

Обратим свой взор в сторону стоматологии. Ультразвук камни зубные удаляет менее болезненно, да и все остальные манипуляции врача переносятся гораздо легче. Кроме того, в травматологической и ортопедической практике ультразвук используется для восстановления целостности сломанных костей. Во время таких операций пространство между костными отломками заполняют специальным составом, состоящим из костной стружки и особой жидкой пластмассы, а затем воздействуют ультразвуком, благодаря чему все компоненты крепко соединяются. Те, кто перенес хирургические вмешательства, в ходе которых использовался ультразвук, отзывы оставляют разные - как положительные, так и отрицательные. Однако следует отметить, что довольных пациентов все же больше!

В последнее время широкое распространение в разных областях науки, техники и медицины получило использование ультразвука.

Что же это такое? Где применяются ультразвуковые колебания? Какую пользу они способны принести человеку?

Ультразвуком называют волнообразные колебательные движения с частотой более 15-20 килогерц, возникающие под воздействием окружающей среды и неслышимые для человеческого уха. Ультразвуковые волны легко фокусируются, что увеличивает интенсивность колебаний.

Источники ультразвука

В природе ультразвук сопровождает различные естественные шумы: дождь, грозу, ветер, водопад, морской прибой. Его способны издавать некоторые животные (дельфины, летучие мыши), что помогает им обнаруживать препятствия и ориентироваться в пространстве.

Все существующие искусственные источники ультразвука подразделяют на 2 группы:

  • генераторы - колебания возникают в результате преодоления препятствий в виде газа или жидкостной струи.
  • электроакустические преобразователи- трансформируют электрическое напряжение в механические колебания, что приводит к излучению акустических волн в окружающую среду.

Приемники ультразвука

Низкие и средние частоты ультразвуковых колебаний в основном воспринимаются электроакустическими преобразователями пьезоэлектрического типа. В зависимости от условий использования различают резонансные и широкополосные устройства.

Чтобы получить характеристики звукового поля, которые усреднены по времени, применяют термические приемники, представленные термопарами или термисторами, которые покрывают веществом, обладающим звукопоглощающими свойствами.

Оптические методы, в число которых входит дифракция света, способны оценить интенсивность ультразвука и звуковое давление.

Где применяются ультразвуковые волны?

Ультразвуковые волны нашли применение в разнообразных областях.

Условно сферы использования ультразвука можно разделить на 3 группы:

  • получение информации;
  • активное воздействие;
  • обработка и передача сигналов.

В каждом случае используется определенный диапазон частот.

Очистка ультразвуком

Ультразвуковое воздействие обеспечивает качественную очистку деталей. При простом полоскании деталей на них остается до 80% грязи, при вибрационной чистке - близко 55%, при ручной - около 20%, а при ультразвуковой - менее 0,5%.

Детали, обладающие сложной формой, можно избавить от загрязнений только при помощи ультразвука.

Используются ультразвуковые волны и при очистке воздуха и газов. Ультразвуковой излучатель, помещенный в пылеосадочную камеру, увеличивает результативность ее действия в сотни раз.

Механическая обработка хрупких и сверхтвердых материалов

Благодаря ультразвуку стала возможной сверхточная обработка материалов. С его помощью делают вырезы различной формы, матрицы, шлифуют, гравируют и даже сверлят алмазы.

Применение ультразвука в радиоэлектронике

В радиоэлектронике нередко возникает необходимость задержать электрический сигнал по отношению к какому-то другому сигналу. Для этого стали пользоваться ультразвуковыми линиями задержки, действие которых основано на преобразовании электрических импульсов в ультразвуковые волны. Также они способны преобразовывать механические колебания в электрические. В соответствии с этим линии задержки могут быть магнитострикционными и пьезоэлектрическими.

Использование ультразвука в медицине

Применение ультразвуковых колебаний в медицинской практике основано на возникающих в биологических тканях эффектах во время прохождения сквозь них ультразвука. Колебательные движения оказывают на ткани массажирующее действие, а при поглощении ультразвука они локально нагреваются. В то же время в организме наблюдаются различные физико-химические процессы, не вызывающие необратимых изменений. В результате ускоряются обменные процессы, что благоприятно сказывается на функционировании всего организма.

Применение ультразвука в хирургии

Интенсивное действие ультразвука вызывает сильное нагревание и кавитацию, что нашло применение в хирургии. Использование фокусного ультразвука при проведении операций дает возможность осуществлять локальное разрушающее действие в глубинных участках организма, в том числе в области головного мозга, не нанося вреда близлежащим тканям.

Хирурги в своей работе используют инструменты с рабочим концом в виде иглы, скальпеля или пилы. При этом хирургу не требуется прикладывать усилий, что уменьшает травматичность процедуры. В то же время ультразвук оказывает анальгезирующее и кровоостанавливающее действие.

Воздействие ультразвуком назначается при обнаружении в организме злокачественного новообразования, что способствует его разрушению.

Ультразвуковые волны обладает и антибактериальным действием. Поэтому они применяются для стерилизации инструментов и лекарственных средств.

Исследование внутренних органов

С помощью ультразвука осуществляют диагностическое обследование органов, расположенных в брюшной полости. Для этого применяют специальный аппарат.

Во время ультразвукового исследования удается обнаружить различные патологии и аномальные структуры, отличить доброкачественное новообразование от злокачественного, обнаружить инфекцию.

Ультразвуковые колебания используют при диагностике печени. Они позволяют определить болезни желчных потоков, исследовать желчный пузырь на присутствие в нем камней и патологических изменений, выявить цирроз и доброкачественные болезни печени.

Широкое применение нашло ультразвуковое исследование в области гинекологии, особенно при диагностике матки и яичников. Оно помогает обнаружить гинекологические заболевания и дифференцировать злокачественные и доброкачественные опухоли.

Используются ультразвуковые волны и при исследовании других внутренних органов.

Применение ультразвука в стоматологии

В стоматологии с помощью ультразвука удаляют зубной налет и камень. Благодаря ему наслоения снимаются быстро и безболезненно, без травмирования слизистой оболочки. В то же время происходит обеззараживание ротовой полости.

Частоты 16 Гц- 20 кГц, которые способен воспринимать слуховой аппарат человека принято называть звуковыми или акустическими, например писк комара «10 кГц. Но воздух, глубины морей и земные недра наполнены звуками, лежащими вне этого диапазона — инфра и ультразвуками. В природе ультразвук встречается в качестве компонента многих естественных шумов, в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука, частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны. Существование таких звуков было обнаружено с развитием акустики только в конце XIX века. Тогда же начались первые исследования УЗ, но основы его применения были заложены только в первой трети XX-века.

Что такое ультразвук

Ультразвуковые волны (неслышимый звук) по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике.

Вот основные из них:

  • Малая длина волны. Для самого низкого УЗ диапазона длина волны не превышает в большинстве сред нескольких сантиметров. Малая длина волны обуславливает лучевой характер распространения УЗ волн. Вблизи излучателя УЗ распространяется в виде пучков, по размеру близких к размеру излучателя. Попадая на неоднородности в среде, УЗ пучок ведёт себя, как световой луч испытывая отражение, преломление, рассеяние, что позволяет в оптически непрозрачных средах формировать звуковые изображения, используя чисто оптические эффекты (фокусировку, дифракцию и др.)
  • Малый период колебаний, что позволяет излучать ультразвук в виде импульсов и осуществлять в среде точную временную селекцию распространяющихся сигналов.
  • Возможность получения высоких значений интенсивности колебаний при малой амплитуде, т.к. энергия колебаний пропорциональна квадрату частоты. Это позволяет создавать УЗ пучки и поля с высоким уровнем энергии, не требуя при этом крупногабаритной аппаратуры.
  • В ультразвуковом поле развиваются значительные акустические течения, поэтому воздействие ультразвука на среду порождает специфические физические, химические, биологические и медицинские эффекты, такие как кавитация, капиллярный эффект, диспергирование, эмульгирование, дегазация, обеззараживание, локальный нагрев и многие другие.

История ультразвука

Внимание к акустике было вызвано потребностями морского флота ведущих держав — Англии и Франции, т.к. акустический — единственный вид сигнала, способный далеко распространяться в воде. В 1826 году французский учёный Колладон определил скорость звука в воде. Эксперимент Колладона считается рождением современной гидроакустики. Удар в подводный колокол в Женевском озере происходил с одновременным поджогом пороха. Вспышка от пороха наблюдалась Колладоном на расстоянии 10 миль. Он также слышал звук колокола при помощи подводной слуховой трубы. Измеряя временной интервал между этими двумя событиями, Колладон вычислил скорость звука — 1435 м/сек. Разница с современными вычислениями только 3 м/сек.

В 1838 году, в США, звук впервые применили для определения профиля морского дна. Источником звука, как и в опыте Колладона, был колокол, звучащий под водой, а приёмником большие слуховые трубы, опускавшиеся за борт. Результаты опыта были неутешительными — звук колокола, также как и подрыв в воде пороховых патронов, давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

Первый генератор ультразвука сделал в 1883 году англичанин Гальтон. Ультразвук создавался подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух (или другой газ), выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на неё и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо «пьезоэлектричество» от греческого слова, означающего «нажать». Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

Гибель «Титаника» от столкновения с айсбергом, необходимость борьбы с новым оружием — подводными лодками требовали быстрого развития ультразвуковой гидроакустики. В 1914 году, французский физик Поль Ланжевен совместно с русским учёным, жившим в Швейцарии — Константином Шиловским впервые разработали гидролокатор, состоящий из излучателя ультразвука и гидрофона — приёмника УЗ колебаний, основанный на пьезоэффекте. Гидролокатор Ланжевена — Шиловского, был первым ультразвуковым устройством, применявшимся на практике. Также в начале века российский ученый С.Я.Соколов разработал основы ультразвуковой дефектоскопии в промышленности. В 1937 году немецкий врач-Упсихиатр Карл Дуссик, вместе с братом Фридрихом, физиком, впервые применили ультразвук для обнаружения опухолей головного мозга, но результаты полученные ими оказались недостоверными. В медицинской диагностике ультразвук начал применяться только с 50-х годов XX-го века в США.

Применение ультразвука

Многообразные применения ультразвука можно условно разделить на три направления:

  1. получение информации посредством ультразвука
  2. воздействие на вещество, существо
  3. обработка и передача сигналов

Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется для:

  • контроля протекания химических реакций, фазовых переходов, полимеризации и др.
  • определения прочностных характеристик и состава материалов,
  • определения наличия примесей,
  • определения скорости течения жидкости и газа

С помощью ультразвука можно стирать, отпугивать грызунов, использовать в медицине, проверять различные материалы на наличие дефектов и еще много чего интересного.

УЛЬТРАЗВУКОВЫЕ КОЛЕБАНИЯ , колебания, имеющие столь высокую частоту, что звуки от них не воспринимаются ухом. Частоты ультразвуковых колебаний начинаются с 15000-20000 Hz. О существовании ультразвуковых колебаний было известно уже давно, а после появления в 1883 г. свистка Гальтона, издававшего неслышные звуки, демонстрация их вошла в практику преподавания. Однако до последнего времени ультразвуковые колебания не имели никакого практического значения, т. к. не существовало достаточно мощных источников ультразвуковых колебаний. Началом оживления исследований ультразвуковых колебаний следует считать 1917-19 гг., когда Ланжевену в Париже удалось применить кварц для получения мощных ультразвуковых волн в воде. В особенности же оживились исследования ультразвуковых колебаний после работ Кэди, начавшихся в 1922 г.; это оживление продолжается и в данное время.

Способы получения ультразвуковых колебаний весьма разнообразны; почти все способы получения колебаний пригодны и для ультразвуковых колебаний. Не слишком мощные звуки проще всего получаются свистком Гальтона (фиг. 1), представляющим воздушный резонатор, собственная частота которого может меняться от 10000 до 30000 Hz и против отверстия которого направляется струя воздуха. Мощность такого свистка невелика, и во всех нижеописываемых способах источником энергии ультразвуковой частоты является переменный электрический ток, получаемый обычно от автоколебательных электрических контуров с электронной лампой; исключение представляет только поющая дуга, с которой Неклепаевым в 1911 г. были получены ультразвуковые колебания и волны с частотами до 3500000 Hz, что соответствует длине волны около 0,1 мм. Волны были получены в воздухе, и оказалось, что последний весьма сильно их поглощает. Первым мощным источником ультразвуковых колебаний был пьезоэлектрический передатчик Ланжевена, предназначенный для работ в воде. Основною частью передатчика Ланжевена является пластинка Q кварца (фиг. 2), вырезанная перпендикулярно к электрической оси и снабженная плотно приклеенными к ней обкладками А, А. Если подводить к ним переменный ток, то вследствие пьезоэлектрического пластинка кварца расширяется и сжимается с частотою, равной частоте переменного тока. При подходящем выборе частоты, когда собственные колебания передатчика попадают в резонанс с током, они становятся весьма мощными и излучают большую ультразвуковую энергию. В подводном передатчике Ланжевена только одна пластинка А находится в соприкосновении с водою, другая же заключена в корпус, показанный на фиг. 2 схематически пунктиром. Такие передатчики строят обычно на частоты около 30000-40000 Hz.

Вуд и Люмис употребляли для своих опытов пластинки с весьма тонкими обкладками, практически не влиявшими на собственную частоту пластинки. Т. к. общая толщина передатчика была у них много меньше, то частота ультразвуковых колебаний у них была много больше, именно порядка 5·10 5 Hz. Мясникову удалось дойти до частот 10 6 -10 7 Hz; передатчики в обоих случаях помещались в масляной ванне, где и распространялись ультразвуковые волны. Имеются успешные попытки получать ультразвуковые колебания достаточной мощности и путем использования магнитострикционных колебаний. Гейнес получил весьма сильные ультразвуки посредством возбуждения магнитострикционных колебаний в никелевой трубке, на нижнюю часть которой, находящуюся в воздухе, действовало переменное магнитное поле, а верхняя, находящаяся в жидкости, излучала звук. Неудовлетворительные результаты дает и электрическая искра. В настоящее время лучшим практическим способом для получения мощных ультразвуковых передатчиков является способ Ланжевена. Опыты по получению тем же способом ультразвуковых волн в воздухе показали, что отдача передатчиков этого типа в воздухе весьма незначительна.

Распространение ультразвуковых волн в газах и жидкостях в общем подчиняется тем же закономерностям, как и обычные звуковые волны, однако имеются и некоторые особенности. Ультразвуковые волны в воздухе и газах весьма значительно поглощаются и тем сильнее, чем выше частота ультразвуковых волн. Кратчайшие из них, исследованные Неклепаевым, ослабляются в 100 раз, уже пройдя 6 мм. Волны в 8 раз длиннее ослабляются во столько же раз, пройдя 40 см, и т. д. Кроме того замечена некоторая дисперсия ультразвуковых волн. При больших мощностях ультразвуковых передатчиков от них кроме ультразвукового излучения идет «ветер», впервые обнаруженный Мейсснером на кварцевых пластинках, наблюдающийся и у подводных передатчиков. Если, как в опытах Вуда и Люмиса, ультразвуковые волны падают на границу двух сред (в их опытах масло - воздух и масло - вода), то поверхность соприкосновения их сильно искажается вследствие т. н. звукового давления, образуются целые фонтаны мельчайших брызг, а в опытах с маслом и водой образуется эмульсия масла в воде; ультразвуковые волны, распространяющиеся вдоль по стеклянной палочке, вызывают ощущение ожога при прикосновении к ней, хотя термометр показывает только незначительное повышение температуры. Значительны также и физиология, действия мощных ультразвуковых волн: животные и растительные клетки и бактерии погибают в поле ультразвуковых волн, так что оказалось возможным этим способом стерилизовать молоко; поблизости передатчиков Ланжевена погибали рыбки. Возможно, при дальнейшем развитии, ультразвуковые волны получат терапевтическое значение. Вследствие чрезвычайно малой длины волны в поле ультразвуковых волн наблюдается дифракция световых волн, как в дифракционных решетках (Дебай и Сирс). Построены (Пирс) интерферометры для ультразвуковых волн, служащие для определения скоростей звука в газах и жидкостях. Разнообразны приложения ультразвуковых колебаний в технике , причем почти все основаны на свойствах именно кварцевых резонаторов. В виду того что затухание в колеблющихся кварцевых стержнях, пластинках и в особенности кольцах много меньше, чем в электрических контурах, последние заменяются первыми во всех случаях, когда необходим резко выраженный резонанс. Так получили большое распространение кварцевые стабилизаторы для; свойство кварца светиться при колебаниях, так как на нем появляются электрические заряды, использовано в волноуказателях (Гибе). Частота колебаний, даваемая кварцевыми кольцами, настолько постоянна, что Моррисон использовал их для электрических часов, превзошедших по своей точности все до того известные, т. ч. кварц в настоящее время является наилучшим стандартом частоты.

Подводные кварцевые передатчики для ультразвуковых колебаний получили еще незначительное распространение, однако вследствие их высокой частоты у них имеются два достоинства по сравнению с электромагнитными подводными передатчиками: они обладают, во-первых; большой направленностью, позволяя сосредоточить пучок исходящих от них лучей в узком телесном угле; во-вторых, они имеют (при хорошей конструкции, которая еще не достигнута вполне) большой КПД. В первую очередь они получили применение как приборы по определению глубин в т. н. эхолотах . Луч исходящего от передатчика звука направляется ко дну; отражаясь от него, возвращается к тому же передатчику, который его принимает; записывающая установка регистрирует время хода звука от передатчика до дна и обратно, откуда вычисляется глубина. Ультразвуковые передатчики употребляются для телеграфирования с судна на судно, между прочим, и для подводных лодок, для которых звуковая связь - почти единственно возможная; при этом ультразвуковой передатчик является и приемником. Были попытки применения ультразвуковых лучей для открытия подводных лодок и ледяных гор (Бойль и Рейд, 1926), для просвечивания пороков в металлах (С. Соколов), однако здесь еще не получены результаты достаточно надежные, чтобы соответствующие установки могли войти в практику.

Поделиться